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Abstract

We analyze the asymptotic behavior of the attractors of a parabolic problem
when some reaction and potential terms are concentrated in a neighborhood of a
portion Γ of the boundary and this neighborhood shrinks to Γ as a parameter ε

goes to zero.
We prove that the family of attractors is upper continuous at the ε = 0.

1 Introduction

Let Ω be an open bounded smooth set in IRN with a C2 boundary ∂Ω. Let Γ ⊂ ∂Ω
be a smooth subset of the boundary, isolated from the rest of the boundary, that is,
dist(Γ, ∂Ω \ Γ) > 0.

Define the strip of width ε and base Γ as

ωε = {x− σ~n(x), x ∈ Γ, σ ∈ [0, ε)} (1.1)

for sufficiently small ε, say 0 < ε < ε0, where ~n(x) denotes the outward normal vector to
Γ. We note that for small ε, the set ωε is a neighborhood of Γ in Ω, that collapses to Γ
when the parameter ε goes to zero.

We are interested in the behavior, for small ε, of the solutions of the nonlinear parabolic
problem



















uε
t − div(a(x)∇uε) = f(x, uε) + 1

ε
Xωεgε(x, u

ε) in Ω
a(x)∂uε

∂~n
+ b(x)u = 0 on Γ

Buε = 0 on ∂Ω \ Γ
uε(0) = u0 in Ω

(1.2)
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Figure 1: The sets Ω and ωε

where a ∈ C1(Ω) with a(x) ≥ a0 > 0 in Ω and B denotes the boundary operator in ∂Ω\Γ

Bu = u, Dirichlet case, or Bu = a(x)
∂u

∂~n
+ b(x)u, Robin case,

being ~n the outward normal vector-field to ∂Ω \ Γ and b(x) a C1(∂Ω) function and Xωε

denotes the characteristic function of the set ωε.
Note that in (1.2) the nonlinear term gε(x, u) is only effective on the region ωε which

collapses to Γ as ε → 0.
We will show in this paper that the “limit problem” for the singularly perturbed

problem (1.2) is given by



















ut − div(a(x)∇u) = f(x, u) in Ω
a(x)∂u

∂~n
+ b(x)u = g0(x, u) on Γ

Bu = 0 on ∂Ω \ Γ
u(0) = u0

(1.3)

where g0 is obtained as the limit of the concentrating terms

1

ε
Xωεgε(·, u) → g0(·, u)

as we now explain. To be more precise, observe that the nonlinear terms in (1.2) may
contain zero and first order terms in u, so they can be written as

f(x, u) = h(x) +m(x)u+ f0(x, u) with f0(x, 0) = 0,
∂

∂u
f0(x, 0) = 0 (1.4)
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and

1

ε
Xωεgε(x, u) =

1

ε
Xωε

(

hε(x) + Vε(x)u+ g0
ε(x, u)

)

with g0
ε(x, 0) = 0,

∂

∂u
g0

ε(x, 0) = 0

(1.5)
with certain regularity properties that will be made precise below.

Thus, for small ε, the nonhomogeneous terms, the potential functions and the effec-
tive reactions are “concentrated” in ωε, which collapses to Γ. Note that without loss of
generality we can assume that gε is defined on Ω × IR.

Analogously for (1.3) we will assume

g0(x, u) = h0(x) + V0(x)u+ g0
0(x, u), x ∈ Γ (1.6)

where h0, V0 and g0
0(x, u) are obtained as the limits of the concentrating terms

1

ε
Xωεhε → h0,

1

ε
XωεVε → V0,

in some sense that we make precise below, while

g0
ε(x, u) → g0

0(x, u) uniformly in x ∈ Γ, for u in bounded sets of IR. (1.7)

In order to continue further, we have the following definition.

Definition 1.1 Consider a family of functions J = {jε}ε in Ω.
i) The family J is an “Lr–concentrated bounded family” near Γ if

1

ε

∫

ωε

|jε|
r ≤ C (1.8)

for 1 ≤ r <∞, or
sup
x∈ωε

|jε(x)| ≤ C (1.9)

for the case r = ∞, and C a positive constant independent of ε.
ii) The family J is an “Lr–concentrated convergent family” if it satisfies that for any
smooth function ϕ in Ω, we have

lim
ε→0

1

ε

∫

ωε

jεϕ =
∫

Γ
j0ϕ, (1.10)

for some j0 ∈ Lr(Γ) (or a bounded Radon measure on Γ, j0 ∈ M(Γ) if r = 1). In such a
case we write

1

ε
Xωεjε → j0 cc− Lr.

iii) The family J is said to be “Lr–concentrated (sequentially) compact family” if for any
sequence in the family there exist a subsequence (that we still denote the same) and a
function j0 ∈ Lr(Γ) (or a bounded Radon measure on Γ, j0 ∈ M(Γ) if r = 1) such that
for any smooth function ϕ in Ω, we have (1.10).
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Therefore the results of Lemma 2.2 in [6] can be recast as

Lemma 1.2 With the notations above, a “Lr–concentrated bounded family” is a “Lr–
concentrated (sequentially) compact family”.

Hence, we will assume that

1

ε
Xωεhε → h0,

1

ε
XωεVε → V0, cc− Lr for some r > N − 1. (1.11)

while g0
ε converges to g0

0 as in (1.7).
Our goal is to prove that under assumptions (1.7) and (1.11), plus some growth and

dissipativity conditions on the nonlinear terms, problems (1.2) and (1.3) have globally
defined solutions for certain classes of initial data. Moreover, we are going to show that
the solutions of both problems have enough compactness so that they are attracted to
the global attractors, Aε, 0 ≤ ε ≤ ε0 respectively. The global attractor for each problem
contains all information about the asymptotic behavior of all solutions.

Furthermore, we are going to show that the asymptotic dynamics of (1.2) and (1.3)
are close in the sense that the family of attractors Aε is upper semicontinuous at ε = 0.
That is,

dist(Aε,A0) := sup
uε∈Aε

inf
u0∈A0

{‖uε − u0‖} → 0, as ε→ 0,

in a suitable and strong norm which here implies, among others, uniform convergence in
Ω for the functions and convergence of the derivatives in Lebesgue spaces.

Observe that the approach for upper semicontinuity has grounds in, e.g. Section 2.5.
in [8]; see also [15] and requires the following ingredients. First, we must prove that
all problems have attractors and that they are uniformly bounded with respect to the
parameter 0 ≤ ε ≤ ε0. Then we must prove that the nonlinear semigroups defined by
(1.2) converge as ε → 0 to the one defined by (1.3). This in turn, will be obtained from
the convergence of solutions for the corresponding linear equations, see [14].

Note that problems with concentrating terms have been considered before. First,
linear elliptic problems have been considered in [6] where convergence of solutions and
convergence of spectral pairs have been proved. Some related nonlinear problems have
been analyzed in [5]. Second, linear parabolic equations have been considered in [14]. All
these results are the starting point for the present paper.

The paper is organized as follows. In Section 2 we recall previous results in [14]
about linear parabolic equations with concentrated terms. These include results about
the setting for the solvability of the linear equations, Theorem 2.2, and results about the
convergence of solutions, Theorem 2.3. Section 3 is then devoted to the well posedness
of the nonlinear problems (1.2) and (1.3) where, depending on the space for initial data,
some growth conditions on the nonlinear terms are imposed, see Theorem 3.2; here the
approach is taken from [3]. Also, we impose some sign conditions on the nonlinear terms
that imply that the local solutions above are globally defined, see Theorem 3.5. Then, in
Section 4 we give some dissipative condition which implies that there are suitable uniform
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bounds on the solutions for large times, independent of ε. In particular, we obtain the
existence of the attractors Aε and uniform bounds, in strong norms, on them; see Lemma
4.5. Section 5 is somehow independent of (but required for) the rest of the paper and
is devoted to analyze how the nonlinear terms 1

ε
Xωεg

0
ε(·, u) converge to g0

0(·, u) under
assumption (1.7), when evaluated on families of functions defined in Ω, u, see Lemma 5.2.
With all these, in Section 6 we prove the convergence in finite time of the solutions of (1.2)
to the solutions of (1.3), see Lemma 6.1. With this we obtain the upper semicontinuity of
attractors in Theorem 6.2. Some earlier and weaker results have been announced in [11].

2 Linear problems

In this section we review the functional setting and some results for the linear problems
associated to (1.2) and (1.3), namely



















uε
t − div(a(x)∇uε) = m(x)uε + 1

ε
XωεVε(x)u

ε in Ω
a(x)∂uε

∂~n
+ b(x)uε = m0(x)u

ε on Γ
Buε = 0 on ∂Ω \ Γ
uε(0) = u0 in Ω

(2.1)

and


















ut − div(a(x)∇u) = m(x)u in Ω
a(x)∂u

∂~n
+ b(x)u = (m0(x) + V0(x))u on Γ

Bu = 0 on ∂Ω \ Γ
u(0) = u0 in Ω

(2.2)

with some fixed a ∈ C1(Ω), b ∈ C1(∂Ω) and withm ∈ Lp(Ω), p > N/2 andm0, V0 ∈ Lr(Γ),
r > N − 1 and

1

ε

∫

ωε

|Vε|
r ≤ C.

The reader is referred to [14] for further details.
For this, denote by A0 the operator A0u = −div(a(x)∇u) with boundary conditions

a(x)∂u
∂~n

+ b(x)u = 0 on Γ and Bu = 0 on ∂Ω \Γ. Note the coefficients a, b are C1–smooth.
Choosing Lq(Ω), for 1 < q < ∞, as a base space, the unbounded linear operator

A0 : D(A0) ⊂ Lq(Ω) → Lq(Ω), with domain D(A0) = H2,q
bc (Ω), consisting of all functions

in H2,q(Ω) which satisfy all boundary conditions above, generates an analytic semigroup
in Lq(Ω), see [2]. Here and below Hs,q(Ω) denote the Bessel potentials spaces which, for
integer s, coincide with the usual Sobolev spaces.

Using the complex interpolation–extrapolation procedure, one can construct the scale
of Banach spaces associated to this operator, which will be denoted H2α,q

bc (Ω) for α ∈
[−1, 1], which are closed subspaces of H2α,q(Ω) incorporating some of the boundary con-
ditions. In particular, we have H0,q

bc (Ω) = Lq(Ω), and

H1,q
bc (Ω) =

{

{u ∈ H1,q(Ω) : u = 0 in ∂Ω \ Γ} for Dirichlet
H1,q(Ω) for Robin.
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Recall that Bessel spaces have the sharp embeddings

Hs,q(Ω) ⊂















Lr(Ω), s− N
q
≥ −N

r
, 1 ≤ r <∞, if s− N

q
< 0

Lr(Ω), 1 ≤ r <∞, if s− N
q

= 0

Cη(Ω̄) if s− N
q
> η > 0

with continuous embeddings, see [1]. This embeddings are known to be optimal.
Also, if γΓ denotes the trace operator on Γ, then for s > 1

q
, γΓ is well defined on

Hs,q(Ω) and

Hs,q(Ω)
γΓ→















Lr(Γ), s− N
q
≥ −N−1

r
, 1 ≤ r <∞, if s− N

q
< 0

Lr(Γ), 1 ≤ r <∞, if s− N
q

= 0

Cη(Γ) if s− N
q
> η > 0

see [1].

Note that the scale with negative exponents satisfies H−2α,q
bc (Ω) = (H2α,q′

bc (Ω))′, for
0 < α < 1. Moreover, we have H−2α,q(Ω) = (H2α,q′(Ω))′ and H−2α,q(Ω) →֒ H−2α,q

bc (Ω).
See [2] for details.

Note that in this context, the arguments in Lemma 2.1 and 2.2 in [6] prove that

Lemma 2.1

i) If J = {jε}ε is a “Lr–concentrated bounded family” near Γ, see (1.8), (1.9), then for
any s > 1

ρ′
and s− N

ρ′
≥ −N−1

r′
,

1

ε
Xωεjε is bounded in H−s,ρ(Ω).

ii) If moreover J is such that such that

1

ε
Xωεjε → j0 cc− Lr

then for any s > 1
ρ′

and s− N
ρ′
≥ −N−1

r′
,

1

ε
Xωεjε → j0 in H−s,ρ(Ω).

See Lemma 1.2 above.
Also, the operator −A0 or, more precisely, a suitable realization of it, generates an

analytic semigroup, S0(t), in each space of the scale H2α,q
bc (Ω), α ∈ [−1, 1]. This semigroup

is order preserving and satisfies the smoothing estimates

‖S0(t)u0‖H2α,q

bc
(Ω) ≤

Mα,βe
µt

tα−β
‖u0‖H2β,q

bc
(Ω), t > 0, u0 ∈ H2β,q

bc (Ω)

for 1 ≥ α ≥ β ≥ −1 and some µ ∈ IR. In particular, one has

‖S0(t)u0‖Lτ (Ω) ≤
Mρ,τe

µt

t
N
2

( 1
ρ
− 1

τ
)
‖u0‖Lρ(Ω), t > 0, u0 ∈ Lρ(Ω)
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for 1 ≤ ρ ≤ τ ≤ ∞. The reader is referred to [2] and references therein, for further
properties of this scale of spaces and semigroups.

In particular, for any u0 in H2β,q
bc (Ω) or Lρ(Ω), the function u(t; u0) := S0(t)u0, t > 0,

is a classical solution of (2.1) for Vε = m = m0 = 0.
Now for problems (2.1) and (2.2), the following results have been proved in [14] and

will be used in a crucial way in the rest of the paper.

Theorem 2.2 Assume that m lies in a bounded set in Lp(Ω), with p > N/2, m0 lies
in a bounded set in Lr(Γ) and also that the family of potentials Vε is a Lr–concentrated
bounded family, for r > N − 1, that is

1

ε

∫

ωε

|Vε|
r ≤ C, r > N − 1.

Then, for any 1 < q < ∞, the problem (2.1) defines a strongly continuous, order
preserving, analytic semigroup, Sm,m0,ε(t) in the space H2γ,q

bc (Ω) for any

γ ∈ I(q) := (−1 +
1

2q
, 1 −

1

2q′
).

Moreover the semigroup satisfies the smoothing estimates

‖Sm,m0,ε(t)u0‖H2γ′,q
bc

(Ω)
≤
Mγ′,γe

µt

tγ′−γ
‖u0‖H2γ,q

bc
(Ω), t > 0, u0 ∈ H2γ,q

bc (Ω)

for every γ, γ′ ∈ I(q), with γ′ ≥ γ, for some Mγ′,γ and µ ∈ IR independent of m,m0 and
0 < ε ≤ ε0 and γ, γ′ ∈ I(q). In particular, one has

‖Sm,m0,ε(t)u0‖Lτ (Ω) ≤
Mρ,τe

µt

t
N
2

( 1
ρ
− 1

τ
)
‖u0‖Lρ(Ω), t > 0, u0 ∈ Lρ(Ω)

for 1 ≤ ρ ≤ τ ≤ ∞ with Mρ,τ and µ independent of m,m0 and 0 < ε ≤ ε0.
Finally, for every u0 ∈ H2γ,q

bc (Ω), with γ ∈ I(q), the function uε(t; u0) := Sm,m0,ε(t)u0

is in Cν(Ω) for any 0 < ν < 1 and is a weak solution of (2.1) in the sense that

∫

Ω
uε

tϕ+
∫

Ω
a(x)∇uε∇ϕ+

∫

Γ
(b(x) −m0(x))u

εϕ =
1

ε

∫

ωε

Vε(x)u
εϕ+

∫

Ω
m(x)uεϕ

for all sufficiently smooth ϕ.

Note that if V0 ∈ Lr(Γ), for r > N − 1, with the choice Vε = 0 and m0 + V0 replacing
m0, the result above allows to define the semigroup Sm,m0+V0(t) such that for every u0 ∈
H2γ,q

bc (Ω), with γ as above, the function u(t; u0) := Sm,m0+V0(t)u0 is a weak solution of
(2.2) in the sense that

∫

Ω
utϕ+

∫

Ω
a(x)∇u∇ϕ+

∫

Γ
(b(x) −m0(x))uϕ =

∫

Γ
V0(x)uϕ+

∫

Ω
m(x)uϕ

for all sufficiently smooth ϕ. With these notations we have
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Theorem 2.3 Assume that as ε → 0

mε → m in Lp(Ω), p >
N

2
,

m0,ε → m0 in Lr(Γ), r > N − 1, (2.3)

1

ε
XωεVε → V0, cc− Lr for some r > N − 1

and for any 1 < q <∞, consider the semigroups Smε,m0,ε,ε(t) and Sm,m0+V0(t) as above.
Then for every γ, γ′ ∈ I(q) := (−1 + 1

2q
, 1 − 1

2q′
) , γ′ ≥ γ, and T > 0 there exists

C(ε) → 0 as ε → 0, such that

‖Smε,m0,ε,ε(t) − Sm,m0+V0(t)‖L(H2γ,q
bc

(Ω),H2γ′ ,q
bc

(Ω))
≤
C(ε)

tγ′−γ
, for all 0 < t ≤ T.

In particular, for any 0 < ν < 1 the solutions uε(t; u0) := Sm,m0,ε,ε(t)u0 of (2.1)
converge to solutions u(t; u0) := Sm,m0+V0(t)u0 of (2.2) in Cν(Ω) uniformly on bounded
time intervals away from t = 0.

Finally, about the optimal exponential bound for the semigroups above we have the
following

Proposition 2.4 Assume (2.3) and denote by λε
1 the first eigenvalue of the following

eigenvalue problem











−div(a(x)∇ϕε) = mε(x)ϕ
ε + 1

ε
XωεVε(x)ϕ

ε + λϕε in Ω

a(x)∂ϕε

∂~n
+ b(x)ϕε = m0,ε(x)ϕ

ε on Γ
Bϕε = 0 on ∂Ω \ Γ.

i) We have that, as ε → 0,
λε

1 → λ0
1

which is the first eigenvalue of the limit eigenvalue problem











−div(a(x)∇ϕ) = m(x)ϕ + λϕ in Ω,

a(x)∂ϕ
∂~n

+ b(x)ϕ = (m0(x) + V0(x))ϕ on Γ,
Bϕ = 0 on ∂Ω \ Γ.

ii) For sufficiently small ε and for any −µ < λ0
1, the semigroups Smε,m0,ε,ε(t) and Sm,m0+V0(t)

defined above satisfy

‖Smε,m0,ε,ε(t)u0‖H2γ′ ,q

bc
(Ω)

≤
Mγ′,γe

µt

tγ′−γ
‖u0‖H2γ,q

bc
(Ω), t > 0, u0 ∈ H2γ,q

bc (Ω)

‖Sm,m0+V0(t)u0‖H2γ′,q
bc

(Ω)
≤
Mγ′,γe

µt

tγ′−γ
‖u0‖H2γ,q

bc
(Ω), t > 0, u0 ∈ H2γ,q

bc (Ω)

8



for every γ, γ′ ∈ I(q) := (−1 + 1
2q
, 1 − 1

2q′
), with γ′ ≥ γ, for some Mγ′,γ independent of

0 < ε ≤ ε0. In particular,

‖Smε,m0,ε,ε(t)u0‖Lτ (Ω) ≤
Mρ,τe

µt

t
N
2

( 1
ρ
− 1

τ
)
‖u0‖Lρ(Ω), t > 0, u0 ∈ Lρ(Ω)

and

‖Sm,m0+V0(t)u0‖Lτ (Ω) ≤
Mρ,τe

µt

t
N
2

( 1
ρ
− 1

τ
)
‖u0‖Lρ(Ω), t > 0, u0 ∈ Lρ(Ω)

with Mρ,τ independent of 0 < ε ≤ ε0.

3 Well posedness for nonlinear problems

In this section we give some results on the well posedness for both problems (1.2) and
(1.3). For these we use the results in [3] adapted to the particularities of problems (1.2)
and (1.3) mentioned above. Also note that we will make use of the semigroups described
in Section 2 with boundary potential m0 = 0.

Hence we consider (1.2) and (1.3) in the space X = Lq(Ω) or X = H1,q
bc (Ω), for

1 < q <∞, where

H1,q
bc (Ω) =

{

{u ∈ H1,q(Ω) : u = 0 in ∂Ω \ Γ} for Dirichlet
H1,q(Ω) for Robin.

For either choice of X there exist suitable growth restrictions on the nonlinearities,
such that problems (1.2) and (1.3) are locally well posed in X. For this we consider the
following class of nonlinear terms NX

Definition 3.1 The class NX is formed up with functions j(x, u) such that
i) j(x, ·) : IR → IR is locally Lipschitz, uniformly on x ∈ Ω or x ∈ Γ
ii) If X = Lq(Ω), assume that

|j(x, u) − j(x, v)| ≤ c|u− v|(|u|ρ−1 + |v|ρ−1 + 1), (3.1)

iii) If X = H1,q
bc (Ω) and

a) if 1 < q < N , assume (3.1)
b) if q = N assume that for every η > 0, there exists cη > 0 such that

|j(x, u) − j(x, v)| ≤ cη(e
η|u|

N
N−1

+ eη|v|
N

N−1
)|u− v|, (3.2)

c) if q > N , no further conditions are assumed.

Then the techniques from [3] applied here give the following result.
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Theorem 3.2 Assume the nonlinear terms f(x, u), gε(x, u) and g0(x, u) satisfy (1.4),
(1.5) and (1.6) respectively such that for every fixed 0 < ε ≤ ε0 we have h, 1

ε
Xωεhε ∈

L∞(Ω), m, 1
ε
XωεVε ∈ Lp(Ω) for some p > N/2, and for ε = 0, h0 ∈ L∞(Γ) and V0 ∈ Lr(Γ),

for some r > N − 1.
Also, assume X = Lq(Ω) or X = H1,q

bc (Ω), with

f0, g
0
ε , g

0
0 ∈ NX .

Moreover assume that either

i) For (1.2), with fixed 0 < ε ≤ ε0,
a) if X = Lq(Ω) the exponents ρf0 and ρg0

ε
in (3.1), are such that

ρf0 , ρg0
ε
≤ ρΩ := 1 +

2q

N
,

b) if X = H1,q
bc (Ω) exponents ρf0 and ρg0

ε
in (3.1), are such that

ρf0 , ρg0
ε
≤ ρΩ := 1 +

2q

N − q
.

ii) For (1.3)
a) if X = Lq(Ω) the exponents ρf0 and ρg0

0
in (3.1), are such that with N ≥ 2 (respec-

tively N = 1)

ρf0 ≤ ρΩ := 1 +
2q

N
, and ρg0

0
≤ ρΓ := 1 +

q

N
, (respectively, ρg0

0
< ρΓ := 1 + q),

b) if X = H1,q
bc (Ω) exponents ρf0 and ρg0

0
in (3.1), are such that

ρf0 ≤ ρΩ := 1 +
2q

N − q
and ρg0

0
≤ ρΓ := 1 +

q

N − q
.

Then for any u0 ∈ X there exists a unique (in certain sense) mild solution u(·, u0) ∈
C([0, τ), X), of problems (1.2) or (1.3), respectively, satisfying u(0, u0) = u0 in X. This
solution depends continuously on the initial data u0 ∈ X.

Remark 3.3 Observe that adding a term λu to both left and right hand sides of (1.2)
and (1.3) and, with the notations of Section 2, considering the semigroups Sm,ε(t)e

−λt and
Sm,V0(t)e

−λt, which correspond to the case m0 = 0 in Section 2, the solutions of (1.2) and
(1.3) in Theorem 3.2 satisfy the modified variation of constants formula

uε(t) = Sm,ε(t− t0)e
−λ(t−t0)uε(t0) +

∫ t

t0
Sm,ε(t− s)e−λ(t−s)Hε(u

ε(s))) ds (3.3)

and

u(t) = Sm,V0(t− t0)e
−λ(t−t0)u(t0) +

∫ t

t0
Sm,V0(t− s)e−λ(t−s)H0(u(s)) ds (3.4)
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for t ≥ t0 ≥ 0 respectively, where λ ∈ IR is arbitrary and the nonlinear terms are given by

Hε(u) = h+ f0(·, u) + λu+
1

ε
Xωεhε +

1

ε
Xωεg

0
ε(·, u) (3.5)

and
H0(u) = (h+ f0(·, u) + λu)Ω + (h0 + g0

0(·, u))Γ (3.6)

respectively. Note that the latter must be understood in the sense that

< H0(u), ϕ >=
∫

Ω
(h + f0(·, u) + λu)ϕ+

∫

Γ
(h0 + g0

0(·, u))ϕ

for suitable smooth u and ϕ; see [3].

In order to ensure that the local solutions constructed above are globally defined,
following [4], we will assume the following sign conditions on the nonlinear terms

Sign conditions (S) Assume in addition that the there exist C ∈ Lp(Ω), 0 ≤ D ∈ Lp(Ω)
with p > N

2

uf(x, u) ≤ C(x)u2 +D(x)|u|, x ∈ Ω, u ∈ IR, (3.7)

and either
i) for (1.2), with fixed 0 < ε ≤ ε0, there exist Eε ∈ Lp(Ω), 0 ≤ Fε ∈ Lp(Ω), p > N

2

such that
ugε(x, u) ≤ Eε(x)u

2 + Fε(x)|u|, x ∈ ωε, u ∈ IR, (3.8)

ii) for (1.3), there exist E0 ∈ Lr(Γ), 0 ≤ F0 ∈ Lr(Γ), r > N − 1 such that

ug0(x, u) ≤ E0(x)u
2 + F0(x)|u|, x ∈ Γ, u ∈ IR. (3.9)

Remark 3.4 Observe that comparing (1.4) with (3.7), (1.5) with (3.8) and (1.6) with
(3.9), we get

|h(x)| ≤ D(x), |hε(x)| ≤ Fε(x), |h0(x)| ≤ F0(x).

Then we have, see [4, Theorem 2.2] and also [13, Theorems 2.5 and 2.6].

Theorem 3.5 Under the sign assumptions (S) above, the local solutions in Theorem 3.2
are defined for all t ≥ 0 and each solution is bounded in L∞(Ω) and in X on bounded
time intervals away from t = 0.

In particular (1.2) and (1.3) define nonlinear semigroups

Tε(t)u0 = uε(t; u0), 0 ≤ ε ≤ ε0, u0 ∈ X,

for either X = Lq(Ω) or X = H1,q
bc (Ω).
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Proof.

Step 1. We first prove the L∞(Ω) bounds on the solutions. For fixed 0 < ε ≤ ε0, let
Uε(t, |u0|) be the solution of



















Uε
t − div(a(x)∇Uε) = C(x)Uε + 1

ε
X ωεEε(x)U

ε +D(x) + 1
ε
XωεFε(x) in Ω,

a(x)∂Uε

∂~n
+ b(x)Uε = 0 on Γ,

BUε = 0 on ∂Ω \ Γ
Uε(0) = |u0| in Ω.

(3.10)
Then, since D,Fε ≥ 0, we have that Uε(t, |u0|) ≥ 0. Also, from (3.7) and (3.8) by
comparison, we have u(t, u0) ≤ Uε(t, |u0|), for as long as u(t, u0) exists. Proceeding
similarly we obtain that u(t, u0) ≥ −Uε(t, |u0|) for as long as u(t, u0) exists. Consequently

|uε(t, u0)| ≤ Uε(t, |u0|), (3.11)

for as long as u(t, u0) exists.
Now observe that the variations of constants formula for (3.10) gives

Uε(t) = Sε(t)|u0| +
∫ t

0
Sε(t− s)Hε ds

where we denote temporarily Hε = D + 1
ε
XωεFε which is in Lp(Ω) for p > N/2, by

assumption and Sε(t) is the semigroup in Theorem 2.2, for the choice m = C, m0 = 0,
Vε = Eε.

Taking now L∞(Ω) norms we have that, using the estimates in Theorem 2.2, for all
0 < t ≤ T ,

‖Uε(t)‖L∞(Ω) ≤ Cε(T )t−
N
2q ‖u0‖Lq(Ω) + Cε(T )

∫ t

0
(t− s)−

N
2p ‖Hε‖Lp(Ω) ds. (3.12)

Now, the right hand side term is bounded for t in compact intervals bounded away
from 0 (the integral term is convergent since p > N/2). From here, the L∞(Ω) bound in
[δ, T ] follows.

On the other hand, for ε = 0, let U(t, |u0|) be the solution of



















Ut − div(a(x)∇U) = C(x)U +D(x) in Ω,
a(x)∂U

∂~n
+ b(x)U = E0(x)U + F0(x) on Γ,

BU = 0 on ∂Ω \ Γ,
U(0) = |u0| in Ω

(3.13)

Then, since D,F0 ≥ 0, we have that U(t, |u0|) ≥ 0. Also, from (3.7) and (3.9) by com-
parison, we have u(t, u0) ≤ U(t, |u0|), for as long as u(t, u0) exists. Proceeding similarly
we obtain that u(t, u0) ≥ −U(t, |u0|) for as long as u(t, u0) exists. Consequently

|u(t, u0)| ≤ U(t, |u0|), (3.14)

for as long as u(t, u0) exists.
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Now observe that the variations of constants formula for (3.13) gives

U(t) = S(t)|u0| +
∫ t

0
S(t− s)H0 ds

where we denote temporarily H0 = DΩ +(F0)Γ, in the sense that, for smooth enough test
functions,

< H0, ϕ >=
∫

Ω
Dϕ+

∫

Γ
F0ϕ.

Note that here S(t) is the semigroup in Theorem 2.2 for the choice m = C, m0 = E0

Vε = 0.
Now observe that for the term S(t)|u0|+

∫ t
0 S(t−s)Dds the argument runs as in (3.12).

On the other hand, note that as F0 ∈ Lr(Γ) for r > N − 1, then using a test function

ϕ ∈ H2γ,r′

bc (Ω) with 2γ > 1
r′

we obtain that F0 ∈ H−2γ,r
bc (Ω). Hence, using the estimates in

Theorem 2.2 we get for 0 ≤ t ≤ T ,

‖
∫ t

0
S(t− s)(F0)Γ ds‖H2γ′,r

bc
(Ω)

≤ C(T )
∫ t

0
(t− s)−(γ′+γ)‖F0‖H−2γ,r

bc
(Ω) ds (3.15)

and the right hand side is bounded in [0, T ] provided γ′ + γ < 1. Since r > N − 1 and
taking γ close to 1

2r′
, the sharp embeddings of Bessel spaces in Section 2 imply that there

exist γ′ as above such that H2γ′,r
bc (Ω) ⊂ L∞(Ω).

Step 2. Now we prove solutions are global. Using the bounds in Step 1 observe that in
the variations of constants formula (3.3) and (3.4) with λ = 0, we have that, for t > t0 > 0,
(3.5) is bounded in Ω while in (3.6) the parts in Ω and Γ are both bounded. Therefore,
on finite time intervals away from t = 0, (3.5) is bounded in Lρ(Ω) for any 1 < ρ < ∞
while (3.6) is bounded in H−2γ,ρ

bc (Ω) for 2γ > 1
ρ′

for any 1 < ρ <∞.

Then, using the estimates in Theorem 2.2, from (3.3) we get for 0 < t0 ≤ t ≤ T ,

‖uε(t)‖
H2γ′ ,ρ

bc
(Ω)

≤ Cε(T )(t− t0)
−γ′

+ Cε(T )
∫ t

t0
(t− s)−γ′

ds, (3.16)

for any 1 < ρ <∞ and 0 ≤ γ′ < 1, while from (3.4) we get

‖u(t)‖
H2γ′,ρ

bc
(Ω)

≤ C0(T )(t− t0)
−γ′

+ C0(T )
∫ t

t0
(t− s)−(γ′+γ) ds (3.17)

provided 1 < ρ <∞ and γ′ + γ < 1, that is for γ′ < 1 − γ < 1 − 1
2ρ′

= 1
2

+ 1
2ρ

.

Hence, we obtain bounds in H2γ′,ρ
bc (Ω) on finite time intervals away from zero. In

particular we can take ρ = q and γ′ > 1/2 and then the solutions are global.

Remark 3.6

i) Observe that in the proof above if the semigroups Sε(t) and S(t) decay exponentially
then the L∞(Ω) bounds in (3.12) and (3.15) can be obtained for all t > 0 and uniformly
for u0 such that ‖u0‖Lq(Ω) ≤M .
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With this, using (3.3) and (3.4) with λ large enough such that the semigroups Sm,ε(t)e
−λt

and Sm,V0(t)e
−λt decay exponentially, the bounds (3.16) and (3.17) can also be obtained

for all t > 0 and uniformly for u0 such that ‖u0‖Lq(Ω) ≤M .
In such a case the results in [8] would imply that, for each fixed 0 ≤ ε ≤ ε0, (1.2) and

(1.3) have attractors Aε and A0 respectively in X.

ii) On the other hand, with the argument above we could obtain bounds independent of ε in
(3.12) and (3.16) if the constants and the exponential bounds of the semigroups Sε(t) and
Sm,ε(t) are independent of ε and if 1

ε
XωεFε was a bounded family in Lp(Ω) for p > N/2.

The first of this conditions can be guaranteed by Theorem 2.2 and Proposition 2.4
provided

1

ε

∫

ωε

|Eε|
r,

1

ε

∫

ωε

|Vε|
r ≤ C,

and
1

ε
XωεEε → E,

1

ε
XωεVε → V0, cc− Lr for some r > N − 1.

However the second condition would read

1

εp

∫

ωε

|Fε|
p ≤ C

which is far more restrictive than actually needed, since conditions of the type (1.8) are
much weaker. Note that the conditions of the type (1.8) can only give uniform bounds in
L1(Ω) which are not enough to obtain L∞(Ω) estimates on the solutions. To see this note
that

|
1

ε

∫

ωε

Fε| ≤
1

ε

(

∫

ωε

|Fε|
r
)1/r

|ωε|
1/r′ =

(1

ε

∫

ωε

|Fε|
r
)1/r( |ωε|

ε

)1/r′

≤ C

since |ωε| = O(ε), while if 1 ≤ p < r

‖
1

ε
XωεFε‖

p
Lp(Ω) =

1

εp

∫

ωε

|Fε|
p ≤

1

εp−1

(1

ε

∫

ωε

|Fε|
r
)p/r( |ωε|

ε

)1−p/r

would not be bounded if p > 1.
In the next section we will address the question of obtaining asymptotic bounds (i.e.

for t→ ∞) which are independent of ε.

4 Existence of attractors and uniform bounds

In this section we give conditions that allow to prove that the nonlinear semigroups defined
by problems (1.2) and (1.3) in Theorem 3.5 have global attractors Aε and A0 respectively
and to obtain suitable uniform bounds on Aε independent of ε.

For this we will assume that in (3.8)

1

ε

∫

ωε

|Eε|
r ≤ C, r > N − 1 (4.1)
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and
1

ε

∫

ωε

|Fε|
r ≤ C, r > N − 1. (4.2)

Observe that by Lemma 1.2 we may assume without loss of generality that

1

ε
XωεEε → E cc− Lr, r > N − 1, (4.3)

and
1

ε
XωεFε → F cc− Lr, r > N − 1 (4.4)

as in Definition 1.1. See also Lemma 2.1.
Therefore we will also assume the following dissipativity condition.

Dissipative condition (D) There exists δ > 0 such that the first eigenvalue, λ1, of the
following problem











−div(a(x)∇ϕ) = C(x)ϕ + λϕ in Ω

a(x)∂ϕ
∂~n

+ b(x)ϕ = Ẽ(x)ϕ on Γ
Bϕ = 0 on ∂Ω \ Γ

(4.5)

satisfies
λ1 > δ > 0 (4.6)

for Ẽ = E as in (4.3) and Ẽ = E0 in (3.9).

Lemma 4.1 Assume the sign conditions (3.7), (3.8) and (3.9), the concentrated bounds
(4.1), (4.2) and (4.3), (4.4) and the dissipativity condition (4.6).

Then there exist a constant K∞ and a function R∞(M, t), for M, t > 0, independent
of ε such that for each fixed M > 0, R∞(M, t), is monotonically decreasing and converges
to zero, as t → ∞ and such that for sufficiently small 0 ≤ ε ≤ ε0, the global solutions of
problems (1.2) and (1.3) in Theorem 3.5, satisfy that for initial data such that ‖u0‖Lq(Ω) ≤
M

sup
0≤ε≤ε0

sup
‖u0‖Lq(Ω)≤M

‖uε(t, ·; u0)‖L∞(Ω) ≤ K∞ +R∞(M, t).

In particular, for any M > 0,

lim sup
t→∞

sup
0≤ε≤ε0

sup
‖u0‖Lq(Ω)≤M

‖uε(t, ·; u0)‖L∞(Ω) ≤ K∞.

Proof. In this proof we keep the notations in the proof of Theorem 3.5. We start with
the case ε = 0, that is, for problem (1.3) and we follow the argument in Proposition 3.2
in [4]; see also Theorem 3.15 in [13].

Since condition (D) holds for Ẽ = E0 in (3.9), see (4.5), (4.6), consider 0 ≤ Φ0(x) the
unique solution of the following problem











−div(a(x)∇Φ0) = C(x)Φ0 +D(x) in Ω

a(x)∂Φ0

∂~n
+ b(x)Φ0 = E0(x)Φ

0 + F0(x) on Γ
BΦ0 = 0 on ∂Ω \ Γ

(4.7)
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which is the unique stationary point of (3.13). Thus, since C,D ∈ Lp(Ω) with p > N/2,
E0, F0 ∈ Lr(Γ) with r > N − 1, then elliptic regularity implies Φ0 ∈ L∞(Ω); see e.g.
[6, 14].

Note that condition (D) implies that S(t) decays exponentially, that is the estimates
in Proposition 2.4 hold for µ = −δ. Then in (3.14) we have

U(t, |u0|) = S(t)(|u0| − Φ0) + Φ0.

Then estimates in Proposition 2.4 applied to the semigroup S(t) imply that

‖U(t, |u0|)‖L∞(Ω) ≤
Ke−δt

t
N
2q

‖|u0| − Φ0‖Lq(Ω) + ‖Φ0‖L∞(Ω)

and the result follows for ε = 0.
Now for 0 < ε ≤ ε0, that is, for problem (1.2), we denote by λε

1 the first eigenvalue of
the following eigenvalue problem











−div(a(x)∇ϕε) = C(x)ϕε + 1
ε
XωεEε(x)ϕ

ε + λϕε in Ω

a(x)∂ϕε

∂~n
+ b(x)ϕε = 0 on Γ

Bϕε = 0 on ∂Ω \ Γ.

Since (4.3) holds, by the spectral convergence obtained in [6], we have λε
1 → λ1 with

λ1 the first eigenvalue of the elliptic limit problem (4.5) with Ẽ = E; see Proposition 2.4.
From condition (4.6), we get that for small enough ε0 we have λε

1 > δ for every 0 < ε ≤ ε0.
Therefore, since C,D ∈ Lp(Ω) with p > N/2, and for each fixed ε we have 1

ε
XωεEε,

1
ε
XωεFε ∈

Lr(Ω) with r > N − 1 ≥ N/2, there exists a unique solution 0 ≤ Φε ∈ L∞(Ω) of the
elliptic problem











−div(a(x)∇Φε) = C(x)Φε + 1
ε
XωεEε(x)Φ

ε +D(x) + 1
ε
XωεFε(x) in Ω

a(x)∂Φε

∂~n
+ b(x)Φε = 0 on Γ

BΦε = 0 on ∂Ω \ Γ
(4.8)

which is the unique stationary solution of (3.10).
Thus, as before, we have that in (3.11)

Uε(t, |u0|) = Sε(t)(|u0| − Φε) + Φε.

Now from condition (D), (4.6) and part ii) in Proposition 2.4, we have that

‖Uε(t, |u0|)‖L∞(Ω) ≤
Ke−δt

t
N
2q

‖|u0| − Φε‖Lq(Ω) + ‖Φε‖L∞(Ω).

for some K > 0 independent of ε.
Now, since (4.3) and (4.4) hold, the convergence results for elliptic problems in [6], we

have that Φε(x) → Φ(x), as ε→ 0, in Cβ(Ω), for some β > 0, where Φ solves










−div(a(x)∇Φ) = C(x)Φ +D(x) in Ω
a(x)∂Φ

∂~n
+ b(x)Φ = E(x)Φ + F (x) on Γ

BΦ = 0 on ∂Ω \ Γ.
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In particular,
‖Φε‖L∞(Ω) ≤ C

for some C independent of ε and we get the result.

Remark 4.2 Observe that in the Lemma we have R∞(M, t) → ∞ as t → 0+. Also
observe that for either X = Lq(Ω) or X = H1,q

bc (Ω) the bounds on the solutions in Lemma
4.1 are uniform for bounded sets in Lq(Ω) of initial data.

In particular, we get

Corollary 4.3 With the notations of the Lemma 4.1 and with the functions defined in
(4.7) and (4.8), we have for all 0 ≤ ε ≤ ε0

lim sup
t→∞

|uε(t, x; u0)| ≤ Φε(x)

uniformly in x ∈ Ω and for any initial data such that ‖u0‖Lq(Ω) ≤M .
Also, if |u0(x)| ≤ Φε(x) for all x ∈ Ω then

|uε(t, x; u0)| ≤ Φε(x)

for all 0 ≤ ε ≤ ε0, x ∈ Ω and t > 0.

Remark 4.4 The uniform bound in L∞(Ω) on Φε does not follow from the arguments in
Theorem 4.5 in [4]. In fact this would require uniform bounds of 1

ε
XωεEε,

1
ε
XωεFε in some

Lp(Ω) with p > N/2, but a bound like (1.8), for 1 < r < ∞, only gives uniform bounds
in L1(Ω); see Remark 3.6. Instead the argument above relies on the sharp results in [6]
that allow to conclude that the concentrating terms near the boundary actually behave as
boundary terms. This explains why (1.8) for r > N − 1 suffices.

With this and the smoothing effect of the equations we get

Lemma 4.5 Under the assumptions in Lemma 4.1 assume moreover that

sup
x∈ωε

|hε(x)| ≤ C,
1

ε

∫

ωε

|Vε|
r ≤ C, r > N − 1

and {g0
ε(x, u)}ε is uniformly bounded in Ω on bounded sets of IR, i.e. for any R > 0 there

exists a positive constant C(R) independent of ε such that

|g0
ε(x, u)| ≤ C(R), for all x ∈ Ω, and |u| ≤ R.

Then, for any 1 < ρ <∞ and γ′ < 1
2
+ 1

2ρ
there exists a constant Kρ,γ′ and a function

Rρ,γ′(M, t), for M, t > 0, independent of ε such that for each fixed M > 0, Rρ,γ′(M, t), is
monotonically decreasing and converges to zero, as t → ∞ and such that for sufficiently
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small 0 ≤ ε ≤ ε0, the global solutions of problems (1.2) and (1.3) in Theorem 3.5, satisfy
that for initial data such that ‖u0‖Lq(Ω) ≤M

sup
0≤ε≤ε0

sup
‖u0‖Lq(Ω)≤M

‖uε(t, ·; u0)‖H2γ′,ρ

bc
(Ω)

≤ Kρ,γ′ +Rρ,γ′(M, t).

In particular,
lim sup

t→∞
sup

0≤ε≤ε0

sup
‖u0‖Lq(Ω)≤M

‖uε(t, ·; u0)‖H2γ′,ρ

bc
(Ω)

≤ Kρ,γ′ .

Therefore, the global semigroups defined by problems (1.2) and (1.3) in Theorem 3.5,
have global attractors Aε in X which satisfy

sup
0≤ε≤ε0

sup
v∈Aε

‖vx1‖
H2γ′,ρ

bc
(Ω)

≤ Kρ,γ′.

In particular the attractors are uniformly bounded in H1,ρ
bc (Ω) and Cν(Ω) for any 1 < ρ <

∞ and for any 0 < ν < 1 and for every function uε ∈ Aε we have, for 0 ≤ ε ≤ ε0

|uε(x)| ≤ Φε(x)

for all x ∈ Ω.

Proof. We start with 0 < ε ≤ ε0. From the assumptions on Vε of this lemma and
Proposition 2.4, we can choose λ large enough such that in the variations of constants
formula (3.3), Sm,ε(t)e

−λt decays exponentially and independent of ε.
Now, using Lemma 4.1, we use the variations of constants formula (3.3), for t ≥ t0 > 0.

Then, using that ‖uε(s; u0)‖L∞(Ω) ≤ K∞ + R∞(M, t0) for s ≥ t0 and for any initial data
such that ‖u0‖Lq(Ω) ≤ M , in (3.5) we have that h, f 0

0 (·, uε) are uniformly bounded in
L∞(Ω), while for t ≥ t0

sup
x∈ωε

|g0
ε(x, u

ε(t, x))| ≤ C.

These combined with the assumption on hε and Lemma 2.1, with r = ∞, gives that for
any 1 < ρ < ∞, 2γ > 1

ρ′
and 2γ − N

ρ′
≥ −N + 1, the nonlinear term Hε(u

ε(s; u0)) in

(3.5) is uniformly bounded in H−2γ,ρ
bc (Ω), for any s ≥ t0 and for any initial data such that

‖u0‖Lq(Ω) ≤ M .
Thus part ii) in Proposition 2.4, gives that, for γ′ + γ < 1 and some µ > 0

‖uε(t; u0)‖H2γ′,ρ
bc

(Ω)
≤ (K∞+R∞(M, t0))Ke

−µ(t−t0)(t−t0)
−γ′

+KC
∫ t

t0
e−µ(t−s)(t−s)−(γ′+γ)ds.

Note that the second condition on γ above reads 2γ > 1
ρ′
−N−1

ρ
and therefore the estimates

above hold for any 2γ > 1
ρ′

and γ′ < 1 − γ < 1 − 1
2ρ′

= 1
2

+ 1
2ρ

.

In particular, starting with ρ = q we get bounds in H2γ′,q
bc (Ω) for some γ′ > 1/2 and

then the results in [8] imply the existence of the attractor. The rest is immediate.
For ε = 0 we use the same argument on the variations of constants formula (3.4) using

similar bounds now on the nonlinear term in (3.6).
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Remark 4.6 i) Again in the Lemma we have Rρ,γ′(M, t) → ∞ as t → 0+. Also observe
that for either X = Lq(Ω) or X = H1,q

bc (Ω) the bounds on the solutions in Lemma 4.1 are
uniform for bounded sets in Lq(Ω) of initial data.
ii) As a consequence of the uniform estimates above, for any M > 0, t0 > 0 and
‖u0‖Lq(Ω) ≤ M the set

{Tε(t)u0, t ≥ t0, ‖u0‖Lq(Ω) ≤M} = {Tε(s)Tε(t0)u0, s ≥ 0, ‖u0‖Lq(Ω) ≤ M}

is bounded in L∞(Ω) and in H2γ′,ρ
bc (Ω) for any 1 < ρ <∞ and γ′ < 1

2
+ 1

2ρ
.

In particular, once we have fixed such a family of initial data, we can assume that the
nonlinear terms are globally Lipschitz and the semigroups Tε(t) and T0(t) are defined on
Lρ(Ω) for any 1 < ρ < ∞. In particular, the attractors Aε attract solutions in the norm

of H2γ′,ρ
bc (Ω) for any 1 < ρ <∞ and γ′ < 1

2
+ 1

2ρ
.

Now since the nonlinear semigroups Tε(t) and T0(t) are order preserving and the
estimates above, from Theorem 3.2 in [13], see also [7], we get the existence of extremal
equilibria for problems (1.2) and (1.3) which are the caps of the attractors

Proposition 4.7 Under the above notations and hypotheses, for each 0 ≤ ε ≤ ε0, there
exists two ordered extremal equilibria ϕε

m ≤ ϕε
M such that Aε ⊂ [ϕε

m, ϕ
ε
M ], ϕε

m, ϕ
ε
M ∈ Aε

and
ϕε

m ≤ lim inf
t→∞

uε(t, x; u0) ≤ lim sup
t→∞

uε(t, x; u0) ≤ ϕε
M

uniformly in x ∈ Ω and for initial data u0 such that ‖u0‖Lq(Ω) ≤M .

5 Concentrated nonlinear terms

Observe that in [6] we obtained several results that allow to pass to the limit in linear
elliptic problems with term that concentrate near the boundary Γ. In the present paper
we need to pass to the limit in nonlinear terms, Therefore, in this section, we prove
two technical results that will allow to pass to the limit in nonlinear terms which are
concentrating near the boundary as ε→ 0. Hence, in a sense, this section is independent
of, but needed for, the rest of the paper.

We note that the region ωε in (1.1) can be written as ωε = ∪0≤δ<εΓδ where

Γδ = {x− δ~n(x), x ∈ Γ}

where ~n(x) denotes the outward normal unit at x ∈ Γ and 0 ≤ δ < ε. Note that Γ0 = Γ.
Observe that for sufficiently small ε0 and for 0 < δ < ε0, denoting Ωδ = Ω \ ωδ, then

we can construct a C2 diffeomorphism τδ : Ω −→ Ωδ of the form

τδ(x) =

{

x if dist(x,Γ) ≥ ε0

z − ψδ(σ)~n(z) if x = z − σ~n(z), σ ∈ [0, ε0)
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with an increasing C2 function ψδ : [0, ε0] → [δ, ε0] such that ψδ(ε0) = ε0, ψδ(0) = δ.
With this construction we also have

‖τδ − I‖C2(Ω) → 0, as δ → 0, (5.1)

and also τδ is a C2 diffeomorphism between Γ and Γδ and τδ(x) = x − δ~n(x) for x ∈ Γ;
see [5, 6].

In particular, for any H defined on ωε and for ε < ε0, we have

∫

ωε

H dx =
∫ ε

0

∫

Γδ

HdSδ dδ, (5.2)

and ∫

Γδ

HdSδ =
∫

Γ
H(τδ(x))J(τδ(x)) dS0(x), (5.3)

where dSδ is the surface measure associated to Γδ and J(τδ(x)) := J(x, δ) is the surface
Jacobian of the transformation τδ. Note that in particular there exists constants 0 < J1 ≤
J2 such that for all x ∈ Γ and for all δ ∈ [0, ε0]

J1 ≤ J(x, δ) ≤ J2 and ‖Jδ − 1‖L∞(Γ) → 0 as δ → 0. (5.4)

Then we have the following result.

Lemma 5.1 With the notations above, if ε0 > 0 is sufficiently small and and 0 ≤ δ < ε0,
then for any 1 < q ≤ ∞, there exists a positive constant M independent of δ such that
for every ϕ ∈ H1,q(Ω) we have

‖ϕ(τδ) − ϕ‖Lq(Γ) ≤Mδ1− 1
q ‖∇ϕ‖Lq(ωδ)

In particular, if ϕ ∈ H1,r(Ω) and 1 < q ≤ r (or q = 1 < r) we have that

‖ϕ(τδ) − ϕ‖Lq(Γ) ≤ MC(Γ)δ1− 1
r ‖∇ϕ‖Lr(ωδ).

Proof. First, by density we can assume that ϕ ∈ C1(Ω). In such a case, we consider the
function φ(t, x) = ϕ(x−tδ~n(x)) with t ∈ [0, 1] and x ∈ Γ. Then, for x ∈ Γ and 1 < q <∞
we have

|ϕ(τδ(x)) − ϕ(x)|q = |φ(1) − φ(0)|q = |
∫ 1

0
φ′(t) dt|q,

and

|
∫ 1

0
φ′(t)dt|q ≤

∫ 1

0
|∇ϕ(x− tδ~n(x))|q|δ~n(x)|qdt ≤ δq

∫ 1

0
|∇ϕ(x− tδ~n(x))|q dt.

Thus, we have that

∫

Γ
|ϕ(τδ(x)) − ϕ(x)|q dS0(x) ≤ δq

∫ 1

0

∫

Γ
|∇ϕ(x− tδ~n(x))|q dS0(x) dt. (5.5)
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Therefore, using (5.4) we get from (5.5)

‖ϕ(τδ) − ϕ‖q
Lq(Γ) ≤

δq

Jq
1

∫ 1

0

∫

Γ
|∇ϕ(x− tδ~n(x))|q|J(x, tδ)|q dS0(x) dt

which, by (5.3), leads to

‖ϕ(τδ) − ϕ‖q
Lq(Γ) ≤

δq

Jq
1

∫ 1

0

∫

Γtδ

|∇ϕ(τtδ(x)|
q dStδ(x) dt.

Now, the change of variables s = tδ shaves off a δ and (5.2) gives

‖ϕ(τδ) − ϕ‖q
Lq(Γ) ≤

δq−1

Jq
1

∫ δ

0

∫

Γs

|∇ϕ(τs(x))|
q dSs(x) ds =

δq−1

Jq
1

‖∇ϕ‖q
Lq(ωδ).

The case q = ∞ follows along the same lines as above and the rest follows from
Holder’s inequality and the fact that |ωδ| ≤ C(Γ)δ.

Now, we consider a family of functions

g0
ε : Ω × IR −→ IR,

for 0 ≤ ε ≤ ε0, satisfying the following conditions
i) {g0

ε(x, u)}ε is uniformly bounded in Ω on bounded sets of IR, i.e. for any R > 0
there exists a positive constant C(R) independent of ε such that

|g0
ε(x, u)| ≤ C(R), for all x ∈ Ω, and |u| ≤ R. (5.6)

ii) {g0
ε(x, u)}ε is uniformly continuous in Ω, uniformly on bounded sets of IR and also

uniformly Lipschitz on bounded sets of IR, i.e. for any R > 0 there exists a positive
constant L(R) independent of ε such that

|g0
ε(x, u) − g0

ε(x, v)| ≤ L(R)|u− v|, for all x ∈ Ω, |u| ≤ R, |v| ≤ R. (5.7)

iii) g0
ε(x, u) converges to g0

0(x, u) uniformly on Γ and on bounded sets of IR, i.e. for
any R > 0

g0
ε(x, u) → g0

0(x, u) as ε→ 0, uniformly on x ∈ Γ and |u| ≤ R (5.8)

Then we have the following result. Note that here p and q are not meant to be the
same as in previous Sections. Also, the result below applies in the case g0

ε = g0
0, that is,

when the family does not depend on ε.

Lemma 5.2 Consider a family of functions

g0
ε : Ω × IR −→ IR
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for 0 ≤ ε ≤ ε0. Also, consider a family of functions, C, in Ω such that, for some
1 < p <∞ and R > 0

‖v‖H1,p(Ω)∩L∞(Ω) ≤ R for all v ∈ C. (5.9)

i) If {g0
ε}ε satisfies (5.6), then there exists a positive constant, M(R), independent of ε

such that for every 1 < q <∞ and any ϕ ∈ Hs,q′(Ω) with s > 1
q′

and every v ∈ C we have

|
1

ε

∫

ωε

g0
ε(·, v)ϕ| ≤M(R)‖ϕ‖Hs,q′ (Ω). (5.10)

In particular

sup
v∈C

‖
1

ε
Xωεg

0
ε(·, v)‖H−s,q(Ω) ≤M(R).

ii) If {g0
ε}ε satisfies (5.6), (5.7) and (5.8), then there exists M(ε, R) with M(ε, R) → 0

as ε → 0 such that for every ϕ ∈ H1,q′(Ω) and v ∈ C

|
1

ε

∫

ωε

g0
ε(·, v)ϕ−

∫

Γ
g0
0(·, v)ϕ| ≤ M(ε, R)‖ϕ‖H1,q′(Ω), (5.11)

provided

p ≥
q(N − 1)

N
. (5.12)

In particular

1

ε
Xωεg

0
ε(·, v) → g0

0(·, v) in H−1,q(Ω), uniformly in v ∈ C. (5.13)

Proof. i) First, given s > 1
q′

there exists r′ ≥ 1 such that s− N
q′
≥ −N−1

r′
. From Sobolev

embeddings we have Hs,q′(Ω) ⊂ Lr′(Γ) and from Lemma 2.1 in [6] we have that, for some
constant independent of ε,

1

ε

∫

ωε

|ϕ|r
′

≤ C‖ϕ‖r′

Hs,q′(Ω).

Now, we consider r such that 1
r

+ 1
r′

= 1. Then (5.6), the L∞(Ω) bound on v ∈ C and
using |ωε| ≤ C(Γ)ε we get 1

ε

∫

ωε |g
0
ε(·, v)|

r ≤ C(R) with C(R) independent of ε. Hence,
for all v ∈ C

∣

∣

∣

1

ε

∫

ωε

g0
ε(·, v)ϕ

∣

∣

∣ ≤
[1

ε

∫

ωε

|g0
ε(·, v)|

r]
1
r

[1

ε

∫

ωε

|ϕ|r
′
]

1
r′ ≤M(R)‖ϕ‖Hs,q′ (Ω)

and we get (5.10).
ii) Observe that using (5.2), for all v ∈ C

∣

∣

∣

1

ε

∫

ωε

g0
ε(·, v)ϕ−

∫

Γ
g0
0(·, v)ϕ

∣

∣

∣ =
∣

∣

∣

1

ε

∫ ε

0

∫

Γδ

g0
ε(·, v)ϕ−

∫

Γ
g0
0(·, v)ϕ

∣

∣

∣ ≤

≤ supδ∈[0,ε]

∣

∣

∣

∫

Γδ

g0
ε(·, v)ϕ−

∫

Γ
g0
0(·, v)ϕ

∣

∣

∣ = supδ∈[0,ε]I(δ)
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where, using (5.3),

I(δ) =
∣

∣

∣

∫

Γδ

g0
ε(·, v)ϕ−

∫

Γ
g0
0(·, v)ϕ

∣

∣

∣ ≤
∫

Γ
|g0

ε(τδ, v(τδ))ϕ(τδ)J(τδ) − g0
0(·, v)ϕ| dS0.

Adding and subtracting g0
ε(τδ, v(τδ))ϕJ(τδ), g

0
ε(τδ, v(τδ))ϕ, g0

ε(τδ, v)ϕ and g0
ε(·, v)ϕ in

the expression above, we have that

I(δ) ≤ I1 + I2 + I3 + I4 + I5

with
I1 ≡

∫

Γ
|g0

ε(τδ, v(τδ))J(τδ)[ϕ(τδ) − ϕ]
∣

∣

∣dS0,

I2 ≡
∫

Γ
|g0

ε(τδ, v(τδ))||ϕ||J(τδ) − 1|dS0,

I3 ≡
∫

Γ
|g0

ε(τδ, v(τδ)) − g0
ε(τδ, v)||ϕ|dS0,

I4 ≡
∫

Γ
|g0

ε(τδ, v) − g0
ε(·, v)||ϕ|dS0,

and
I5 ≡

∫

Γ
|g0

ε(·, v) − g0
0(·, v)||ϕ|dS0.

Then we now prove that there exist Mi(ε, R) such that, for every v ∈ C, Ii ≤
Mi(ε, R)‖ϕ‖H1(Ω) with i = 1, 2, 3, 4, 5 for every 0 ≤ δ ≤ ε, and with Mi(ε, R) → 0 as
ε→ 0.

Step 1. Observe that

I1 ≤ ‖g0
ε(τδ, v(τδ))‖L∞(Γ)J2

∫

Γ
|ϕ(τδ) − ϕ|

and using (5.6) and Lemma 5.1, we get for every 0 ≤ δ ≤ ε and every v ∈ C

I1 ≤M1(ε, R)‖ϕ‖H1,q′(Ω)

with M1(ε, R) → 0 as ε→ 0.

Step 2. Now we have that,

I2 ≤
∫

Γ
|g0

ε(τδ, v(τδ))||ϕ||J(τδ) − 1| ≤ ‖Jδ − 1‖L∞(Γ)‖g
0
ε(τδ, v(τδ))‖L∞(Γ)‖ϕ‖L1(Γ)

with ‖ϕ‖L1(Γ) ≤ C(Γ,Ω)‖ϕ‖H1,q′(Ω). Then (5.6) and (5.4) implies, for every 0 ≤ δ ≤ ε and
v ∈ C

I2 ≤M2(ε, R)‖ϕ‖H1,q′(Ω)

with M2(ε, R) → 0 as ε→ 0.
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Step 3. Choose again r′ such that H1,q′(Ω) ⊂ Lr′(Γ), i.e. r′ ≤ q′(N−1)
N−q′

, and then with r

such that 1
r

+ 1
r′

= 1 we have r ≥ q(N−1)
N

and

I3 ≤ ‖g0
ε(τδ, v(τδ)) − g0

ε(τδ, v)‖Lr(Γ)‖ϕ‖Lr′(Γ).

with ‖ϕ‖Lr′(Γ) ≤ C‖ϕ‖H1,q′ (Ω). Then, using (5.7), we get

‖g0
ε(τδ, v(τδ)) − g0

ε(τδ, v)‖Lr(Γ) ≤ L‖v(τδ) − v‖Lr(Γ).

Thus, Lemma 5.1 gives ‖v(τδ)− v‖Lr(Γ) ≤ Mδ1− 1
q ‖v‖H1,r(Ω) and, from the assumptions on

C, ‖v‖H1,r(Ω) is bounded provided q(N−1)
N

≤ r ≤ p. Note that this condition can be met
because of (5.12). Hence, for every 0 ≤ δ ≤ ε and v ∈ C we have that

I3 ≤M3(ε, R)‖ϕ‖H1,q′(Ω)

with M3(ε, R) → 0 as ε→ 0.

Step 4. Now, we have

I4 ≤ ‖g0
ε(τδ, v) − g0

ε(·, v)‖L∞(Γ)‖ϕ‖L1(Γ),

with ‖ϕ‖L1(Γ) ≤ C(Γ,Ω)‖ϕ‖H1,q′ (Ω). Hence, the uniform continuity of g0
ε in the first

variable and (5.1) implies
I4 ≤M4(ε, R)‖ϕ‖H1,q′(Ω)

for every v ∈ C, with M4(ε, R) → 0 as ε→ 0.

Step 5. Finally, observe that

I5 ≤ ‖g0
ε(·, v) − g0

0(·, v)‖L∞(Γ)‖ϕ‖L1(Γ)

with ‖ϕ‖L1(Γ) ≤ C(Γ,Ω)‖ϕ‖H1,q′ (Ω). Then using now (5.8), we have

I5 ≤M5(ε, R)‖ϕ‖H1,q′(Ω)

for every v ∈ C, where M5(ε, R) → 0 if ε→ 0.
Therefore, (5.11) is proved.

In particular, we get

Corollary 5.3 Assume (5.6), (5.7), (5.8) and

1

ε
Xωεhε → h0, cc− L∞

and consider the nonlinear terms defined in (3.5) and (3.6). Finally, consider a family
C as in Lemma 5.2, that is satisfying (5.9). Then we have that for any 1 < q < ∞ and
1
q′
< s ≤ 1
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i) There exists C > 0 independent of ε > 0 such that

sup
v∈C

{‖Hε(v)‖H−s,q

bc
(Ω), ‖H0(v)‖H−s,q

bc
(Ω)} ≤ C.

ii) If (5.12) holds, that is p ≥ q(N−1)
N

, there exists M(ε) → 0 as ε→ 0 such that

sup
v∈C

‖Hε(v) −H0(v)‖H−s,q

bc
(Ω) ≤M(ε).

Proof. Part i) follows from part i) in Lemma 5.2. On the other hand, part ii) with
s = −1 follows from part ii) in Lemma 5.2.

Then, for 1
q′
< s < 1, fix 1

q′
< s0 < s < 1 and by interpolation we get

‖Hε(v) −H0(v)‖H−s,q
bc

(Ω) ≤ C‖Hε(v) −H0(v)‖
θ
H

−s0,q

bc
(Ω)

‖Hε(v) −H0(v)‖
1−θ

H−1,q

bc
(Ω)

for some 0 < θ < 1 and a positive constant C independent of ε. By part i) the first term
in the right hand side above is bounded uniformly in ε, while the second goes to zero,
uniformly for v ∈ C, and we conclude.

6 Upper semicontinuity of attractors

With all the above we can then obtain the convergence of the nonlinear semigroups. Note
that although the nonlinear problems (1.2) and (1.3) are set in the space X = Lq(Ω)
or X = H1,q

bc (Ω) as in Section 3, depending on the growth of the nonlinear term, the
convergence results below always take place in H1,ρ

bc (Ω) for any 1 < ρ <∞.

Lemma 6.1 Fix any M > 0 and t0 > 0 and consider any initial data such that ‖u0‖Lq(Ω) ≤
M and denote uε = Tε(t0)u0.

Then, for any 1 < ρ < ∞ and any T > 0, there exists a constant C(M,T, ε) → 0 if
ε→ 0, such that for ε ∈ (0, ε0),

‖Tε(t)uε − T0(t)uε‖H1,ρ

bc
(Ω) ≤ C(M,T, ε) → 0, as ε → 0, for t ∈ [0, T ].

In particular

sup
vε∈Aε

‖Tε(t)vε − T0(t)vε‖H1,ρ
bc

(Ω) ≤ C(M,T, ε) → 0, as ε→ 0, for t ∈ [0, T ].

Proof. Denote C = {Tε(t)uε = Tε(t + t0)u0, 0 ≤ t ≤ T, ‖u0‖Lq(Ω) ≤ M}. Then by

Lemma 4.1 and 4.5 the family C is bounded in L∞(Ω) and in H1,ρ
bc (Ω) for any 1 < ρ <∞

and the bound depends only on M, t0 and T . In particular C satisfies the assumption (5.9)
in Lemma 5.2 for any 1 < p <∞. Then (5.13) and Corollary 5.3 hold for any 1 < q <∞.
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From the variation of constants formula (3.3) and (3.4), with λ = 0 and t0 = 0, and
Theorem 2.3, we will get below that for any 1 < ρ <∞

‖Tε(t)uε−T0(t)uε‖H1,ρ

bc
(Ω) ≤ C(T, ε)+M(T )

∫ t

0
(t−s)−α‖Tε(s)uε−T0(s)uε‖H1,ρ

bc
(Ω) ds (6.1)

for 1
ρ′
< s < 1 and α = 1

2
(s + 1) < 1, with C(T, ε) → 0 as ε → 0. Hence, applying the

singular Gronwall Lemma, Lemma 7.1.1. in [10], to (6.1), we get the result.
We now split the proof of (6.1) in several steps. In effect, from the variation of

constants formula (3.3) and (3.4) we have that

‖Tε(t)uε − T0(t)uε‖H1,ρ

bc
(Ω) ≤ ‖Sm,ε(t)uε − Sm,V0(t)uε‖H1,ρ

bc
(Ω)+

+
∫ t

0
‖Sm,ε(t− s)Hε(Tε(s)uε) − Sm,V0(t− s)Hε(Tε(s)uε)‖H1,ρ

bc
(Ω) ds+

+
∫ t

0
‖Sm,V0(t− s)

(

Hε(Tε(s)uε) −H0(Tε(s)uε)
)

‖H1,ρ

bc
(Ω) ds+

+
∫ t

0
‖Sm,V0(t− s)

(

H0(Tε(s)uε) −H0(Tε(s)uε)
)

‖H1,ρ

bc
(Ω) ds = I1 + I2 + I3 + I4

Step 1.- From Theorem 2.3, we obtain

I1 = ‖Sm,ε(t)uε − Sm,V0(t)uε‖H1,ρ

bc
(Ω) ≤ C(M,T, ε)‖uε‖H1,ρ

bc
(Ω) ≤ C(M,T, ε)K0

with C(M,T, ε) → 0 if ε→ 0 and K0 a positive constant independent of ε.
Step 2.- Again Theorem 2.3 gives

I2 =
∫ t

0
‖Sm,ε(t− s)Hε(Tε(s)uε) − Sm,V0(t− s)Hε(Tε(s)uε)‖H1,ρ

bc
(Ω) ds ≤

≤ C(T, ε)
∫ t

0
(t− s)−α‖Hε(Tε(s)uε)‖H−s,ρ

bc
(Ω) ds,

with C(T, ε) → 0, for 1
ρ′
< s < 1 and α = 1

2
(s+ 1) < 1.

Now, from part i) in Corollary 5.3 we obtain ‖Hε(Tε(s)uε)‖H−s,ρ
bc

(Ω) ≤ K1 for s ∈ [0, T ]

for some positive constant K1 independent of ε. From this

I2 ≤ C(M,T, ε)K2T
1−α

since t ≤ T .
Step 3.- From Theorem 2.2 we have

I3 =
∫ t

0
‖Sm,V0(t− s)(Hε(Tε(s)uε) −H0(Tε(s)uε)‖H1,ρ

bc
(Ω) ds ≤

≤ C(T )
∫ t

0
(t− s)−α‖Hε(Tε(s)uε) −H0(Tε(s)uε)‖H−s,ρ

bc
(Ω) ds

for 1
ρ′
< s < 1 and α = 1

2
(s+ 1) < 1.
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Using now part ii) in Corollary 5.3, since p is arbitrary, we obtain that ‖Hε(Tε(s)uε)−
H0(Tε(s)uε)‖H−s,ρ

bc
(Ω) ≤ C(M, ε) with C(M, ε) → 0 as ε → 0 uniformly in s ∈ [0, T ].

Hence I3 ≤ C(M, ε)K3T
1−α, with K3 a positive constant independent of ε.

Step 4.- Again Theorem 2.2 gives

I4 =
∫ t

0
‖Sm,V0(t− s)

(

H0(Tε(s)uε) −H0(T0(s)uε)
)

‖H1,ρ
bc

(Ω) ds ≤

≤ C(T )
∫ t

0
(t− s)−α‖H0(Tε(s)uε) −H0(T0(s)uε)‖H−s,ρ

bc
(Ω) ds

for 1
ρ′
< s < 1 and α = 1

2
(s+ 1) < 1.

Now, observe that from the assumptions on the nonlinear terms we get that

‖H0(u) −H0(v)‖H−s,ρ
bc

(Ω) ≤ L‖u− v‖H1,ρ

bc
(Ω)

with L = L(R) if the norm of both u and v in H1,p
bc (Ω) ∩L∞(Ω) is bounded by R for any

1 < p <∞. Hence, from the bounds in Lemmas 4.1 and 4.5 we get

I4 ≤ C(M,T )
∫ t

0
(t− s)−α‖Tε(s)uε − T0(s)uε‖H1,ρ

bc
(Ω) ds

Putting all the estimates above together, we get (6.1) and the proof is complete.
The statement about the attractors follows by the invariance of such sets.

We are now in a position to prove the upper semicontinuity of the family of attractors.

Theorem 6.2 Under the above assumptions, for any 1 < ρ < ∞, the family of global
attractors of (1.2) and (1.3), Aε, is upper semicontinuous at ε = 0 in H1,ρ

bc (Ω), that is

distH1,ρ

bc
(Ω)(Aε,A0) → 0, if ε → 0

where
distH1,ρ

bc
(Ω)(Aε,A0) := sup

uε∈Aε

inf
u0∈A0

{‖uε − u0‖H1,ρ

bc
(Ω)}

Proof. First, note that from Lemma 4.5, ∪0≤ε≤ε0Aε, is a bounded set in H1,ρ
bc (Ω). Then,

as observed at the end of Section 4 we can always assume that, for any 1 < ρ < ∞, the
nonlinear semigroups Tε(t) and T0(t) are defined in H1,ρ

bc (Ω) and the attractors attract in
the norm of H1,ρ

bc (Ω).
In particular, A0 attracts in that norm the set ∪0<ε≤ε0Aε. Hence, given δ > 0, there

exists τ = τ(δ) such that distH1,ρ

bc
(T0(τ)uε,A0) ≤

δ
2

for every uε ∈ Aε with ε ∈ (0, ε0).

Next, using that Aε is an invariant set, given vε ∈ Aε, there exists uε ∈ Aε such that
Tε(τ)uε = vε. Therefore,

distH1,ρ
bc

(vε,A0) ≤ ‖vε − T0(τ)uε‖H1,ρ
bc

(Ω) + distH1,ρ
bc

(T0(τ)uε,A0).
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Then from Lemma 6.1, it is clear if ε is small enough we get

‖vε − T0(τ)uε‖H1,ρ

bc
(Ω) = ‖Tε(τ)uε − T0(τ)uε‖H1,ρ

bc
(Ω) ≤

δ

2
,

and we conclude.

In particular, we get the upper semicontinuity of equilibria

Corollary 6.3

i) For every sequence εk with εk → 0 as k → ∞ and for every sequence of equilibria
ϕεk ∈ Aεk

there exists a subsequence (that we denote the same) and a equilibrium point
ϕ0 ∈ A0 such that

ϕεk → ϕ0, k → ∞ in H1,ρ
bc (Ω)

for any 1 < ρ <∞.
ii) In particular, considering the extremal equilibria in Proposition 4.7, we obtain that

ϕ0
m ≤ lim inf

ε→0
ϕε ≤ lim sup

ε→0
ϕε ≤ ϕ0

M

Proof.

i) First, we note that if εk → 0, k → ∞ and ϕεk ∈ Aεk
in H1,ρ

bc (Ω) then, by Theorem 6.2
we get that ϕ0 ∈ A0.

Since ϕεk is a stationary solution of (1.2), using Lemma 5.2 an Corollary 5.3 it is easy
to obtain that ϕ0 is a stationary solution of (1.3).
ii) This part is immediate.
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